C# · 12月 29, 2021

c# – 浮点加法:精度损失问题

简而言之,我如何执行一个b,使得由于截断而导致的任何精度损失远离零而不是零?

漫长的故事

为了计算集合的样本均值和方差,我计算一系列长的浮点值的总和.由于Var(X)= E(X2)-E(X)2,足以保持所有数字的运行计数,到目前为止所有数字的总和以及所有数字的平方和.

到现在为止还挺好.

然而,绝对需要E(X2)> E(X)2,由于浮点精度并不总是这样.在伪代码中,问题是这样的:

int count;double sum,sumOfSquares;…double value = <current-value>;double sqrVal = value*value; count++;sum += value; //slightly rounded down since value is truncated to fit into sumsumOfSquares += sqrVal; //rounded down MORE since the order-of-magnitude //difference between sqrVal and sumOfSquares is twice that between value and sum;

对于可变序列,这不是一个大问题 – 您最终稍微低估方差,但这往往不是一个大问题.然而,对于具有非零均值的恒定或几乎恒定的集合,可以意味着E(X2) E(X)2,导致负的计算方差,这违反了消费代码的期望.

现在,我知道了Kahan Summation,这不是一个有吸引力的解决方案.首先,它使代码易于优化变幻莫测(取决于优化标志,代码可能或可能不会出现这个问题),其次,问题并不是真正由于精度 – 这是足够好的 – 这是因为添加引入了系统误差为零.如果我可以执行该行

sumOfSquares += sqrVal;

以确保sqrVal四舍五入,而不是下降到sumOfSquares的精度,我会有一个数字合理的解决方案.但是如何才能实现呢?

编辑:完成的问题 – 为什么要在标签字段的下拉列表中输入提交问题?

解决方法 还有一个单程算法重新排列计算.在
伪代码: n = 0mean = 0M2 = 0for x in data: n = n + 1 delta = x – mean mean = mean + delta/n M2 = M2 + delta*(x – mean) # This expression uses the new value of meanvariance_n = M2/n # Sample variancevariance = M2/(n – 1) # Unbiased estimate of population variance

(来源:http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance)

对于您指出的问题,这似乎更好与通常的算法.